Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38638056

RESUMO

Research on experiencing workplace cyberbullying (WCB) and its underlying mechanisms that impact the well-being of teachers is scarce. We propose that cognitive reappraisal, which is a useful and adaptive emotion-regulation strategy for reinterpreting emotion-eliciting situations, is a mediator explaining the inverse relationships between experiencing WCB and well-being. A three-wave longitudinal survey (baseline, T1; 3 months, T2; and 1 year, T3) was conducted with a sample of 444 primary and secondary schoolteachers in Hong Kong, China. Exposure to WCB, cognitive reappraisal, affective well-being and work engagement of participants was assessed. In line with the hypotheses, results showed that cognitive reappraisal mediated the associations between WCB and well-being. WCB at T1 was negatively associated with cognitive reappraisal at T2, which in turn was positively associated with positive affect and work engagement and negatively associated with negative affect at T3. Findings suggest that the intrusive nature of WCB renders its victims emotionally exhausted and helpless, thus negatively impacting the process to reinterpret the situation in a positive light, resulting in undesirable consequences. This study has illuminated WCB's inhibitory mechanism and its long-term detrimental impact. Practical implications are discussed.

2.
Nat Commun ; 15(1): 2937, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580628

RESUMO

Rare-earth monopnictides are a family of materials simultaneously displaying complex magnetism, strong electronic correlation, and topological band structure. The recently discovered emergent arc-like surface states in these materials have been attributed to the multi-wave-vector antiferromagnetic order, yet the direct experimental evidence has been elusive. Here we report observation of non-collinear antiferromagnetic order with multiple modulations using spin-polarized scanning tunneling microscopy. Moreover, we discover a hidden spin-rotation transition of single-to-multiple modulations 2 K below the Néel temperature. The hidden transition coincides with the onset of the surface states splitting observed by our angle-resolved photoemission spectroscopy measurements. Single modulation gives rise to a band inversion with induced topological surface states in a local momentum region while the full Brillouin zone carries trivial topological indices, and multiple modulation further splits the surface bands via non-collinear spin tilting, as revealed by our calculations. The direct evidence of the non-collinear spin order in NdSb not only clarifies the mechanism of the emergent topological surface states, but also opens up a new paradigm of control and manipulation of band topology with magnetism.

3.
NPJ Regen Med ; 9(1): 13, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519518

RESUMO

Neural progenitor cells (NPCs) derived from human pluripotent stem cells(hPSCs) provide major cell sources for repairing damaged neural circuitry and enabling axonal regeneration after spinal cord injury (SCI). However, the injury niche and inadequate intrinsic factors in the adult spinal cord restrict the therapeutic potential of transplanted NPCs. The Sonic Hedgehog protein (Shh) has crucial roles in neurodevelopment by promoting the formation of motorneurons and oligodendrocytes as well as its recently described neuroprotective features in response to the injury, indicating its essential role in neural homeostasis and tissue repair. In this study, we demonstrate that elevated SHH signaling in hNPCs by inhibiting its negative regulator, SUFU, enhanced cell survival and promoted robust neuronal differentiation with extensive axonal outgrowth, counteracting the harmful effects of the injured niche. Importantly, SUFU inhibition in NPCs exert non-cell autonomous effects on promoting survival and neurogenesis of endogenous cells and modulating the microenvironment by reducing suppressive barriers around lesion sites. The combined beneficial effects of SUFU inhibition in hNPCs resulted in the effective reconstruction of neuronal connectivity with the host and corticospinal regeneration, significantly improving neurobehavioral recovery in recipient animals. These results demonstrate that SUFU inhibition confers hNPCs with potent therapeutic potential to overcome extrinsic and intrinsic barriers in transplantation treatments for SCI.

4.
Cell Mol Life Sci ; 81(1): 147, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502309

RESUMO

GABAergic interneurons are poised with the capacity to shape circuit output via inhibitory gating. How early in the development of medial vestibular nucleus (MVN) are GABAergic neurons recruited for feedforward shaping of outputs to higher centers for spatial navigation? The role of early GABAergic transmission in assembling vestibular circuits for spatial navigation was explored by neonatal perturbation. Immunohistochemistry and confocal imaging were utilized to reveal the expression of parvalbumin (PV)-expressing MVN neurons and their perineuronal nets. Whole-cell patch-clamp recording, coupled with optogenetics, was conducted in vitro to examine the synaptic function of MVN circuitry. Chemogenetic targeting strategy was also employed in vivo to manipulate neuronal activity during navigational tests. We found in rats a neonatal critical period before postnatal day (P) 8 in which competitive antagonization of GABAergic transmission in the MVN retarded maturation of inhibitory neurotransmission, as evidenced by deranged developmental trajectory for excitation/inhibition ratio and an extended period of critical period-like plasticity in GABAergic transmission. Despite increased number of PV-expressing GABAergic interneurons in the MVN, optogenetic-coupled patch-clamp recording indicated null-recruitment of these neurons in tuning outputs along the ascending vestibular pathway. Such perturbation not only offset output dynamics of ascending MVN output neurons, but was further accompanied by impaired vestibular-dependent navigation in adulthood. The same perturbations were however non-consequential when applied after P8. Results highlight neonatal GABAergic transmission as key to establishing feedforward output dynamics to higher brain centers for spatial cognition and navigation.


Assuntos
Navegação Espacial , Ratos , Animais , Interneurônios , Transmissão Sináptica , Núcleos Vestibulares/metabolismo , Neurônios GABAérgicos
5.
Eur J Pharmacol ; 968: 176404, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38382804

RESUMO

ß-thalassemia, a globally prevalent genetic disorder, urgently requires innovative treatment options. Fetal hemoglobin (HbF) induction stands as a key therapeutic approach. This investigation focused on Ginsenoside Rg1 from the Panax genus for HbF induction. Employing K562 cells and human erythroid precursor cells (ErPCs) derived from neonatal cord blood, the study tested Rg1 at different concentrations. We measured its effects on γ-globin mRNA levels and HbF expression, alongside assessments of cell proliferation and differentiation. In K562 cells, Rg1 at 400 µM significantly increased γ-globin mRNA expression by 4.24 ± 1.08-fold compared to the control. In ErPCs, the 800 µM concentration was most effective, leading to an over 80% increase in F-cells and a marked upregulation in HbF expression. Notably, Rg1 did not adversely affect cell proliferation or differentiation, with the 200 µM concentration showing an increase in γ-globin mRNA by 2.33 ± 0.58-fold, and the 800 µM concentration enhancing HbF expression by 2.59 ± 0.03-fold in K562 cells. Our results underscore Rg1's potential as an effective and safer alternative for ß-thalassemia treatment. By significantly enhancing HbF levels without cytotoxicity, Rg1 offers a notable advantage over traditional treatments like Hydroxyurea. While promising, these in vitro findings warrant further in vivo exploration to confirm Rg1's therapeutic efficacy and to unravel its underlying mechanistic pathways.


Assuntos
Ginsenosídeos , Talassemia beta , Recém-Nascido , Humanos , Talassemia beta/genética , Hemoglobina Fetal , gama-Globinas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Science ; 383(6683): 634-639, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330133

RESUMO

The interface between two different materials can show unexpected quantum phenomena. In this study, we used molecular beam epitaxy to synthesize heterostructures formed by stacking together two magnetic materials, a ferromagnetic topological insulator (TI) and an antiferromagnetic iron chalcogenide (FeTe). We observed emergent interface-induced superconductivity in these heterostructures and demonstrated the co-occurrence of superconductivity, ferromagnetism, and topological band structure in the magnetic TI layer-the three essential ingredients of chiral topological superconductivity (TSC). The unusual coexistence of ferromagnetism and superconductivity is accompanied by a high upper critical magnetic field that exceeds the Pauli paramagnetic limit for conventional superconductors at low temperatures. These magnetic TI/FeTe heterostructures with robust superconductivity and atomically sharp interfaces provide an ideal wafer-scale platform for the exploration of chiral TSC and Majorana physics.

7.
Nat Commun ; 15(1): 1567, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38378825

RESUMO

Supercooling of water complicates phase change dynamics, the understanding of which remains limited yet vital to energy-related and aerospace processes. Here, we investigate the freezing and jumping dynamics of supercooled water droplets on superhydrophobic surfaces, induced by a remarkable vaporization momentum, in a low-pressure environment. The vaporization momentum arises from the vaporization at droplet's free surface, progressed and intensified by recalescence, subsequently inducing droplet compression and finally self-jumping. By incorporating liquid-gas-solid phase changes involving vaporization, freezing recalescence, and liquid-solid interactions, we resolve the vaporization momentum and droplet dynamics, revealing a size-scaled jumping velocity and a nucleation-governed jumping direction. A droplet-size-defined regime map is established, distinguishing the vaporization-momentum-dominated self-jumping from evaporative drying and overpressure-initiated levitation, all induced by depressurization and vaporization. Our findings illuminate the role of supercooling and low-pressure mediated phase change in shaping fluid transport dynamics, with implications for passive anti-icing, advanced cooling, and climate physics.

9.
Trends Genet ; 40(1): 69-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37891096

RESUMO

Genetic material is organized in the form of chromosomes, which need to be segregated accurately into two daughter cells in each cell cycle. However, chromosome fusion or the presence of unresolved interchromosomal linkages lead to the formation of chromatin bridges, which can induce DNA lesions and genome instability. Persistent chromatin bridges are trapped in the cleavage furrow and are broken at or after abscission, the final step of cytokinesis. In this review, we focus on recent progress in understanding the mechanism of bridge breakage and resolution. We discuss the molecular machinery and enzymes that have been implicated in the breakage and processing of bridge DNA. In addition, we outline both the immediate outcomes and genomic consequences induced by bridge breakage.


Assuntos
Cromatina , Cromossomos , Humanos , Cromatina/genética , DNA/genética , Instabilidade Genômica/genética
10.
Mov Ecol ; 11(1): 79, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129912

RESUMO

BACKGROUND: Site fidelity, the tendency to return to a previously visited site, is commonly observed in migratory birds. This behaviour would be advantageous if birds returning to the same site, benefit from their previous knowledge about local resources. However, when habitat quality declines at a site over time, birds with lower site fidelity might benefit from a tendency to move to sites with better habitats. As a first step towards understanding the influence of site fidelity on how animals cope with habitat deterioration, here we describe site fidelity variation in two species of sympatric migratory shorebirds (Bar-tailed Godwits Limosa lapponica and Great Knots Calidris tenuirostris). Both species are being impacted by the rapid loss and deterioration of intertidal habitats in the Yellow Sea where they fuel up during their annual long-distance migrations. METHODS: Using satellite tracking and mark-resighting data, we measured site fidelity in the non-breeding (austral summer) and migration periods, during which both species live and co-occur in Northwest Australia and the Yellow Sea, respectively. RESULTS: Site fidelity was generally high in both species, with the majority of individuals using only one site during the non-breeding season and revisiting the same sites during migration. Nevertheless, Great Knots did exhibit lower site fidelity than Bar-tailed Godwits in both Northwest Australia and the Yellow Sea across data types. CONCLUSIONS: Great Knots encountered substantial habitat deterioration just before and during our study period but show the same rate of decline in population size and individual survival as the less habitat-impacted Bar-tailed Godwits. This suggests that the lower site fidelity of Great Knots might have helped them to cope with the habitat changes. Future studies on movement patterns and their consequences under different environmental conditions by individuals with different degrees of site fidelity could help broaden our understanding of how species might react to, and recover from, local habitat deterioration.

11.
Front Endocrinol (Lausanne) ; 14: 1283298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027109

RESUMO

Adiponectin (AdipoQ) is an adipokine involved in glucose homeostasis and lipid metabolism. In mammals, its role in appetite control is highly controversial. To shed light on the comparative aspects of AdipoQ in lower vertebrates, goldfish was used as a model to study feeding regulation by AdipoQ in fish species. As a first step, goldfish AdipoQ was cloned and found to be ubiquitously expressed at the tissue level. Using sequence alignment, protein modeling, phylogenetic analysis and comparative synteny, goldfish AdipoQ was shown to be evolutionarily related to its fish counterparts and structurally comparable with AdipoQ in higher vertebrates. In our study, recombinant goldfish AdipoQ was expressed in E. coli, purified by IMAC, and confirmed to be bioactive via activation of AdipoQ receptors expressed in HepG2 cells. Feeding in goldfish revealed that plasma levels of AdipoQ and its transcript expression in the liver and brain areas involved in appetite control including the telencephalon, optic tectum, and hypothalamus could be elevated by food intake. In parallel studies, IP and ICV injection of recombinant goldfish AdipoQ in goldfish was effective in reducing foraging behaviors and food consumption. Meanwhile, transcript expression of orexigenic factors (NPY, AgRP, orexin, and apelin) was suppressed with parallel rises in anorexigenic factors (POMC, CART, CCK, and MCH) in the telencephalon, optic tectum and/or hypothalamus. In these brain areas, transcript signals for leptin receptor were upregulated with concurrent drops in the NPY receptor and ghrelin receptors. In the experiment with IP injection of AdipoQ, transcript expression of leptin was also elevated with a parallel drop in ghrelin mRNA in the liver. These findings suggest that AdipoQ can act as a novel satiety factor in goldfish. In this case, AdipoQ signals (both central and peripheral) can be induced by feeding and act within the brain to inhibit feeding behaviors and food intake via differential regulation of orexigenic/anorexigenic factors and their receptors. The feeding inhibition observed may also involve the hepatic action of AdipoQ by modulation of feeding regulators expressed in the liver.


Assuntos
Ingestão de Alimentos , Carpa Dourada , Animais , Ingestão de Alimentos/fisiologia , Carpa Dourada/genética , Adiponectina/metabolismo , Distribuição Tecidual , Escherichia coli/metabolismo , Filogenia , Clonagem Molecular , Proteínas Recombinantes/metabolismo , Mamíferos/metabolismo
12.
Nutr Bull ; 48(4): 535-545, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864477

RESUMO

Vitamin D deficiency is widespread in different populations and regions worldwide and has become a global health issue. The vitamin D status of the population in the Yunnan Province of Southwest China has not been evaluated to date. Therefore, in this study, we evaluated the vitamin D status according to the serum concentrations of 25-hydroxyvitamin D (25(OH)D) in individuals of Yunnan Province, a low-latitude, high-altitude and multiracial region in China. The data on 25(OH)D concentrations from October 2012 to December 2017 were retrospectively collected and assessed using the laboratory information system from 52 950 hospital-based participants (age, 1 day-96 years; females, 73.74%). The serum concentration of 25(OH)D was evaluated using a chemiluminescent immunoassay. The analysis was stratified by sex, age, sampling season, testing year, minority, residential district, latitude, altitude and meteorological factors. Vitamin D status was classified as follows: severe deficiency: <10 ng/mL; deficiency: <20 ng/mL; insufficiency: <30 ng/mL; and sufficiency: ≥30 ng/mL. The results showed that vitamin D deficiency is highly prevalent in Yunnan Province in a hospital-based cohort, with a deficiency and severe deficiency rate of 65.1% and a sufficiency rate of 5.30%. Significantly lower vitamin D levels and sufficiency rates were observed in females than in males (20.13 ± 7.22 ng/mL vs. 17.56 ± 6.66 ng/mL and 8.20% vs. 4.20%; p < 0.01, respectively); in spring and winter (16.93 ± 6.24 ng/mL; 2.97% and 16.38 ± 6.43 ng/mL; 3.06%, respectively) than in summer and autumn (20.23 ± 7.14 ng/mL; 8.02% and 19.10 ± 6.97 ng/mL; 6.61% [p < 0.01], respectively); and in older individuals (0-6 years: 28.29 ± 13.13 ng/mL vs. >60 years: 14.88 ± 8.39 ng/mL; p < 0.01). Relatively higher vitamin D levels were observed in individuals of Yi, Zhuang, Hani, Dai, Miao and Lisu minorities and lower levels in individuals of Hui and Zang minorities compared with those of the Han nationality (p < 0.01). The mean sunlight duration, mean air temperature, maximum ultraviolet value and latitude were significantly correlated with vitamin D levels (r = -0.53, 0.60, 0.31, -0.68, respectively; p < 0.05). These results suggest that vitamin D status is influenced by sex, age, minority, latitude and some meteorological factors in areas with high and low altitudes. Hence, new public health policies, such as advice on sunshine exposure, food fortification and nutrition education, as well as the implementation of vitamin D supplementation programmes must be considered to alleviate vitamin D deficiency in Yunnan province, Southwest China.


Assuntos
Colestanos , Deficiência de Vitamina D , Masculino , Feminino , Humanos , Idoso , Estudos Transversais , Estudos Retrospectivos , Altitude , China/epidemiologia , Vitamina D , Calcifediol , Deficiência de Vitamina D/epidemiologia , Vitaminas
13.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808640

RESUMO

Unchecked, chronic inflammation is a constitutive component of age-related diseases, including age-related macular degeneration (AMD). Here we identified interleukin-1 receptor-associated kinase (IRAK)-M as a key immunoregulator in retinal pigment epithelium (RPE) that declines with age. Rare genetic variants of IRAK-M increased the likelihood of AMD. IRAK-M expression in RPE declined with age or oxidative stress and was further reduced in AMD. IRAK-M-deficient mice exhibited increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M disrupted RPE cell homeostasis, including compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of AAV-expressing IRAK-M rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in IRAK-M-deficient mice. Our data support that replenishment of IRAK-M expression may redress dysregulated pro-inflammatory processes in AMD, thereby treating degeneration.

14.
Genome Med ; 15(1): 66, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667405

RESUMO

BACKGROUND: Human bone marrow stromal cells (BMSCs) are an easily accessible and expandable progenitor population with the capacity to generate neural cell types in addition to mesoderm. Lineage tracing studies in transgenic animals have indicated Nestin + BMSCs to be descended from the truncal neural crest. Single-cell analysis provides a means to identify the developmental origin and identity of human BMSC-derived neural progenitors when lineage tracing remains infeasible. This is a prerequisite towards translational application. METHODS: We attained transcriptomic profiles of embryonic long bone, adult human bone marrow, cultured BMSCs and BMSC-derived neurospheres. Integrated scRNAseq analysis was supplemented by characterization of cells during culture expansion and following provision of growth factors and signalling agonists to bias lineage. RESULTS: Reconstructed pseudotime upon the integrated dataset indicated distinct neural and osteogenic differentiation trajectories. The starting state towards the neural differentiation trajectory consisted of Nestin + /MKI67 + BMSCs, which could also be diverted towards the osteogenic trajectory via a branch point. Nestin + /PDGFRA + BMSCs responded to neurosphere culture conditions to generate a subpopulation of cells with a neuronal phenotype according to marker expression and gene ontogeny analysis that occupied the end state along the neural differentiation trajectory. Reconstructed pseudotime also revealed an upregulation of BMP4 expression during culture of BMSC-neurospheres. This provided the rationale for culture supplementation with the BMP signalling agonist SB4, which directed progenitors to upregulate Pax6 and downregulate Nestin. CONCLUSIONS: This study suggested BMSCs originating from truncal neural crest to be the source of cells within long bone marrow possessing neural differentiation potential. Unravelling the transcriptomic dynamics of BMSC-derived neural progenitors promises to enhance differentiation efficiency and safety towards clinical application in cell therapy and disease modelling.


Assuntos
Medula Óssea , Medicina Regenerativa , Adulto , Animais , Humanos , Nestina/genética , Osteogênese , Neurônios
15.
BMC Pregnancy Childbirth ; 23(1): 624, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648962

RESUMO

BACKGROUND: Aneuploidy pregnancy is a severe major birth defect and causes about 50% spontaneous miscarriages with unknown etiology. To date, only a few epidemiological studies with small sample sizes have investigated the risk factors for aneuploidy pregnancy. TP53, MDM2, and miR-34b/c genes are implicated in tumorigenesis with aneuploidy, yet the function of their polymorphisms in aneuploidy pregnancy susceptibility needs to be clarified. OBJECTIVE: To elucidate the association of TP53 rs1042522 G > C, MDM2 rs2279744 309 T > G, and miR-34b/c rs4938723 T > C specific polymorphisms with aneuploidy pregnancy. METHODS: In the retrospective case-control study, 330 aneuploidies pregnancy women and 813 normal pregnancy controls were recruited between January 2018 and April 2022 at the First People's Hospital of Yunnan Province, Kunming, China. Three functional polymorphisms, the TP53 rs1042522 G > C (Arg72Pro), MDM2 rs2279744 309 T > G, and miR-34b/c rs4938723 T > C, were genotyped using the snapshot method. RESULTS: The frequency distribution of three genotypic variants was not different between case and control pregnant women and was similar to with Hardy-Weinberg Equilibrium (HWE). However, in the younger subgroup (less than 35 years old), a significant difference was detected in allele and recessive model (p = 0.01). In the advanced age subgroup (more than or equal to 35 years old), G of MDM2 rs2279744 T > G revealed a significantly higher frequency in cases than controls (p = 0.045), and miR-34b/c rs4938723 T > C revealed a significant difference under the dominant model (p = 0.03), but no significant differences were observed in other models and in both younger and older subgroup (p > 0.05, respectively). These results suggest that individual polymorphisms were not associated with aneuploidy pregnancy, combined with age, they may serve as a risk factor for aneuploidy pregnancy. CONCLUSION: Combination of TP53 rs1042522 G > C, MDM2 rs2279744 T > G, and miR-34b/c rs4938723 T > C polymorphisms with maternal age may be related to aneuploidy pregnancy susceptibility. These findings might elaborate on the genetic etiology of aneuploidy pregnancy.


Assuntos
Aneuploidia , MicroRNAs , Gravidez , Humanos , Feminino , Adulto , Estudos de Casos e Controles , China , Estudos Retrospectivos , MicroRNAs/genética , Proteína Supressora de Tumor p53/genética , Proteínas Proto-Oncogênicas c-mdm2/genética
16.
J Perinat Med ; 51(8): 1082-1096, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37486214

RESUMO

OBJECTIVES: To evaluate the association between maternal polymorphisms of NANOS3 rs2016163, HELQ rs4693089, PRIM1 rs2277339, TLK1 rs10183486, ERCC6 rs2228526, EXO1 rs1635501, DMC1 rs5757133, and MSH5 rs2075789 and fetal chromosomal abnormality. METHODS: This retrospective case-control study included 571 women with fetal chromosome abnormalities (330 pregnant women diagnosed with fetal aneuploidy, 241 with fetal de novo structural chromosome pregnancy) and 811 healthy pregnant women between January 2018 and April 2022. All the above polymorphisms were tested using SNaPshot. RESULTS: All the eight polymorphisms were analyzed for genotypes, alleles, under dominant and recessive genetic models. Significant distribution differences of TLK1 rs10183486 in fetal chromosome structural abnormality were found between the case group and control subjects who were <35 years of age [Genotype: p=0.029; Dominant: OR (95 %CI)=0.46 (0.25-0.82), p=0.01 and allele: OR (95 %CI)=0.47 (0.27-0.82), p=0.01 respectively], while no difference was found in the recessive model [OR (95 %CI)=2.49 (0.31-20.40), p=0.39]. In advanced age subgroups for fetal aneuploidy, significant differences were found in genotypes analysis of PRIM1 rs2277339 (p=0.008), allele analysis of TLK1 rs10183486 [OR (95 %CI)=0.62 (0.42-0.91), p=0.02]. For the fetal chromosome structural abnormality population, HELQ rs4693089 revealed a significant distribution difference (p=0.01) but not in the allele, dominant and recessive genetic models analysis (p>0.05 individually). CONCLUSIONS: For older women, maternal PRIM1 rs2277339 and TLK1 rs10183486 polymorphisms may be associated with fetal aneuploidy, while HELQ rs4693089 may be associated with fetal chromosome structural abnormality. Also, carriers of T allele of TLK1 rs10183486 have a lower risk of fetal chromosome structural abnormality in younger women.

17.
Adv Physiol Educ ; 47(3): 594-603, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37382503

RESUMO

The usefulness of virtual reality (VR) technology in physiology education is largely unexplored. Although VR has the potential to enrich learning experience by enhancing the spatial awareness of students, it is unclear whether VR contributes to active learning of physiology. In the present study, we used a mixed-method research approach to investigate students' perceptions of physiology learning based on VR simulations. Quantitative and qualitative data indicate that the implementation of VR learning environments improves the quality of physiology education by promoting active learning in terms of interactive engagement, interest, problem-solving skills, and feedback. In the Technology-Enabled Active Learning Inventory, which consisted of 20 questions to which students responded along a 7-point Likert scale, the majority of students agreed that VR learning of physiology not only stimulated their curiosity (77%; P < 0.001) but also allowed them to obtain knowledge through diverse formats (76%; P < 0.001), participate in thought-provoking dialogue (72%; P < 0.001), and interact better with peers (72%; P < 0.001). Positive responses in the social, cognitive, behavioral, and evaluative domains of active learning were received from students across different disciplines, including medicine, Chinese medicine, biomedical sciences, and biomedical engineering. Their written feedback showed that VR enhanced their interest in physiology and facilitated the visualization of physiological processes to improve their learning. Overall, this study supports that the integration of VR technology into physiology courses can be an effective teaching strategy.NEW & NOTEWORTHY Virtual reality (VR) improves physiology education by promoting active learning in terms of interactive engagement, interest, problem-solving skills, and feedback. Positive responses toward multiple components of active learning were received from students across different disciplines. The majority of students agreed that VR learning of physiology not only stimulated their curiosity but also allowed them to obtain knowledge through diverse formats, participate in thought-provoking dialogue, and interact better with peers.


Assuntos
Aprendizagem Baseada em Problemas , Realidade Virtual , Humanos , Aprendizagem Baseada em Problemas/métodos , Estudantes , Tecnologia
18.
Nat Commun ; 14(1): 3744, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353526

RESUMO

Control and understanding of ensembles of skyrmions is important for realization of future technologies. In particular, the order-disorder transition associated with the 2D lattice of magnetic skyrmions can have significant implications for transport and other dynamic functionalities. To date, skyrmion ensembles have been primarily studied in bulk crystals, or as isolated skyrmions in thin film devices. Here, we investigate the condensation of the skyrmion phase at room temperature and zero field in a polar, van der Waals magnet. We demonstrate that we can engineer an ordered skyrmion crystal through structural confinement on the µm scale, showing control over this order-disorder transition on scales relevant for device applications.


Assuntos
Engenharia , Imãs , Temperatura , Fenômenos Físicos , Fenômenos Magnéticos
19.
Adv Sci (Weinh) ; 10(20): e2205804, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37296073

RESUMO

Neural stem cells (NSCs) derived from human pluripotent stem cells (hPSCs) are considered a major cell source for reconstructing damaged neural circuitry and enabling axonal regeneration. However, the microenvironment at the site of spinal cord injury (SCI) and inadequate intrinsic factors limit the therapeutic potential of transplanted NSCs. Here, it is shown that half dose of SOX9 in hPSCs-derived NSCs (hNSCs) results in robust neuronal differentiation bias toward motor neuron lineage. The enhanced neurogenic potency is partly attributed to the reduction of glycolysis. These neurogenic and metabolic properties retain after transplantation of hNSCs with reduced SOX9 expression in a contusive SCI rat model without the need for growth factor-enriched matrices. Importantly, the grafts exhibit excellent integration properties, predominantly differentiate into motor neurons, reduce glial scar matrix accumulation to facilitate long-distance axon growth and neuronal connectivity with the host as well as dramatically improve locomotor and somatosensory function in recipient animals. These results demonstrate that hNSCs with half SOX9 gene dosage can overcome extrinsic and intrinsic barriers, representing a powerful therapeutic potential for transplantation treatments for SCI.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Células-Tronco Neurais/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Neurônios/metabolismo , Neurogênese , Cicatrização , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
20.
Cells ; 12(11)2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37296600

RESUMO

The in vitro derivation of Schwann cells from human bone marrow stromal cells (hBMSCs) opens avenues for autologous transplantation to achieve remyelination therapy for post-traumatic neural regeneration. Towards this end, we exploited human induced pluripotent stem-cell-derived sensory neurons to direct Schwann-cell-like cells derived from among the hBMSC-neurosphere cells into lineage-committed Schwann cells (hBMSC-dSCs). These cells were seeded into synthetic conduits for bridging critical gaps in a rat model of sciatic nerve injury. With improvement in gait by 12-week post-bridging, evoked signals were also detectable across the bridged nerve. Confocal microscopy revealed axially aligned axons in association with MBP-positive myelin layers across the bridge in contrast to null in non-seeded controls. Myelinating hBMSC-dSCs within the conduit were positive for both MBP and human nucleus marker HuN. We then implanted hBMSC-dSCs into the contused thoracic cord of rats. By 12-week post-implantation, significant improvement in hindlimb motor function was detectable if chondroitinase ABC was co-delivered to the injured site; such cord segments showed axons myelinated by hBMSC-dSCs. Results support translation into a protocol by which lineage-committed hBMSC-dSCs become available for motor function recovery after traumatic injury to both peripheral and central nervous systems.


Assuntos
Bainha de Mielina , Células de Schwann , Humanos , Ratos , Animais , Diferenciação Celular , Bainha de Mielina/fisiologia , Axônios/fisiologia , Células Receptoras Sensoriais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...